Rutin Prevents High Glucose-Induced Renal Glomerular Endothelial Hyperpermeability by Inhibiting the ROS/Rhoa/ROCK Signaling Pathway.
نویسندگان
چکیده
Diabetic nephropathy is a progressive kidney disease caused by damage to the capillaries in the glomeruli. Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy. Hyperglycemia-induced endothelial hyperpermeability is crucial to diabetic nephropathy. Rutin has beneficial effects on diabetic nephropathy, but the exact mechanisms of its protective effect remain elusive. The aim of this study was to assess the role of pretreatment with rutin in an in vitro model of hyperglycemia-induced barrier dysfunction in human renal glomerular endothelial cells. Human renal glomerular endothelial cells were exposed to rutin and/or hyperglycemia for 24 h. Hyperglycemia increased permeability and decreased the junction protein occludin in the cell-cell junction area and the total expression in human renal glomerular endothelial cells, whereas rutin treatment significantly corrected these abnormalities. Furthermore, hyperglycemia-induced activation of RhoA/ROCK was reversed by treatment with rutin or the knockdown of ROCK2. Interestingly, rutin prevented hyperglycemia-induced hyperpermeability, and dysfunction of the tight junction, a high level of reactive oxygen species, and activation of RhoA/ROCK were significantly abolished with the knockdown of Nrf2. In conclusion, rutin significantly prevented hyperglycemia-disrupted renal endothelial barrier function by inhibiting the RhoA/ROCK signaling pathway through decreasing reactive oxygen species, which was mediated by the activation of Nrf2. Our results may explain, at least in part, some beneficial effects of rutin that may be applicable to the treatment of vascular disorders in diabetic nephropathy.
منابع مشابه
Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.
BACKGROUND/AIMS Glomerular endothelium dysfunction leads to the progression of renal architectonic and functional abnormalities in early-stage diabetic nephropathy (DN). Advanced glycation end products (AGEs) and receptor for AGEs (RAGE) are proved to play important roles in diabetic nephropathy. This study investigated the role of Salvianolic acid A (SalA) on early-stage DN and its possible un...
متن کاملHMG CoA reductase inhibition modulates VEGF-induced endothelial cell hyperpermeability by preventing RhoA activation and myosin regulatory light chain phosphorylation.
The beneficial effects of statins are usually assumed to stem from their ability to reduce cholesterol biosynthesis. However, because statins are potent inhibitors of the mevalonate, which governs diverse cell signaling pathways, inhibition of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase may also result in pleiotropic effects. The present study describes a novel pleiotropic effect of statins...
متن کاملSimvastatin Alleviates Hyperpermeability of Glomerular Endothelial Cells in Early-Stage Diabetic Nephropathy by Inhibition of RhoA/ROCK1
BACKGROUND Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy (DN). There is increasing evidence that dysfunction of the endothelial tight junction is a crucial step in the development of endothelial hyperpermeability, but it is unknown whether this occurs in glomerular endothelial cells (GEnCs) during the progressi...
متن کاملEffect of the Rho kinase inhibitor Y-27632 and fasudil on inflammation and fibrosis in human mesangial cells (HMCs) under high glucose via the Rho/ROCK signaling pathway
This study investigated the effect of the Rho kinase inhibitor Y-27632 and fasudil on the development of human mesangial cell (HMC) inflammation and fibrosis induced by high glucose and to clarify the contribution of the Rho/ROCK signaling pathway in the pathogenesis of diabetic kidney disease (DKD). High glucose (30 mmol/l) induced the Rho/ROCK signaling pathway. Western blotting was used to d...
متن کاملThe RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells
A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Planta medica
دوره 82 14 شماره
صفحات -
تاریخ انتشار 2016